Monday, September 27, 2010

About ASP.NET

What is ASP.NET  and What is the Characteristics of ASP.NET?
ASP.NET provides an efficient development environment for developing web application.
ASP.net, a technology that enables the rapid development of powerful web applications and services. In other way ASP.NET is a web application framework developed and marketed by Microsoft to allow programmers to build dynamic web sites, web applications and web services. It was first released in January 2002 with version 1.0 of the .NET Framework. ASP.NET is built on the Common Language Runtime (CLR), allowing programmers to write ASP.NET code using any supported .NET language. The ASP.NET SOAP extension framework allows ASP.NET components to process SOAP messages.
Characteristics
Pages
.NET pages, known officially as "web forms", are the main building block for application development. Web forms are contained in files with an ".aspx" extension; these files typically contain static (XHTML)markup, as well as markup defining server-side Web Controls and User Controls where the developers place all the required static and dynamic content for the web page. Additionally, dynamic code which runs on the server can be placed in a page within a block which is similar to other web development technologies such as PHP,JSP and ASP, but this practice is generally discouraged except for the purposes of databinding since it requires more calls when rendering the page.
Note that this sample uses code "inline", as opposed to code-behind.

 

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

   
   
   
        The current time is:
   
   

Code-behind model
Microsoft recommends dealing with dynamic program code by using the code-behind model, which places this code in a separate file or in a specially designated script tag. Code-behind files typically have names like MyPage.aspx.cs or MyPage.aspx.vb while the page file is MyPage.aspx (same filename as the page file (ASPX), but with the final extension denoting the page language). This practice is automatic in Microsoft Visual Studio and other IDEs. When using this style of programming, the developer writes code to respond to different events, like the page being loaded, or a control being clicked, rather than a procedural walk through the document.
ASP.NET's code-behind model marks a departure from Classic ASP in that it encourages developers to build applications with separation of presentation and content in mind. In theory, this would allow a web designer, for example, to focus on the design markup with less potential for disturbing the programming code that drives it. This is similar to the separation of the controller from the view in modal view controller  frameworks.
Example
The above tag is placed at the beginning of the ASPX file. The CodeFile property of the @ Page directive specifies the file (.cs or .vb) acting as the code-behind while the Inherits property specifies the Class the Page derives from. In this example, the @ Page directive is included in SampleCodeBehind.aspx, then SampleCodeBehind.aspx.cs acts as the code-behind for this page:
using System;
namespace Website
{
               public partial class SampleCodeBehind : System.Web.UI.Page
               {
                               protected void Page_Load(object sender, EventArgs e)
                               {
                                              Response.Write("Hello, world");
                               }
               }
}
In this case, the Page_Load() method is called every time the ASPX page is requested. The programmer can implement event handlers at several stages of the page execution process to perform processing.
 User controls
User controls are encapsulations of sections of pages which are registered and used as controls in ASP.NET. User controls are created as ASCX markup files. These files usually contain static (X)HTML markup, as well as markup defining server-side web controls where the developers place all the required static and dynamic content. A user control is compiled when its containing page is requested and is stored in memory for subsequent requests. User controls have their own events which are handled during the life of ASP.NET requests. An event bubbling mechanism provides the ability to pass an event fired by a user control up to its containing page. Unlike an ASP.NET page, a user control cannot be requested independently; one of its containing pages is requested instead.
Custom controls
Programmers can also build custom controls for ASP.NET applications. Unlike user controls, these controls don't have an ASCX markup file, having all their code compiled into a DLL file. Such custom controls can be used across multiple web applications and Visual Studio projects (which is not allowed with user controls). By using a Register directive, the control is loaded from the DLL.
Rendering technique
ASP.NET uses a visited composites rendering technique. During compilation, the template (.aspx) file is compiled into initialization code which builds a control tree (the composite) representing the original template. Literal text goes into instances of the Literal control class, and server controls are represented by instances of a specific control class. The initialization code is combined with user-written code (usually by the assembly of multiple partial classes) and results in a class specific for the page. The page doubles as the root of the control tree.
Actual requests for the page are processed through a number of steps. First, during the initialization steps, an instance of the page class is created and the initialization code is executed. This produces the initial control tree which is now typically manipulated by the methods of the page in the following steps. As each node in the tree is a control represented as an instance of a class, the code may change the tree structure as well as manipulate the properties/methods of the individual nodes. Finally, during the rendering step a visitor is used to visit every node in the tree, asking each node to render itself using the methods of the visitor. The resulting HTML output is sent to the client.
After the request has been processed, the instance of the page class is discarded and with it the entire control tree. This is a source of confusion among novice ASP.NET programmers who rely on class instance members that are lost with every page request/response cycle.
State management
ASP.NET applications are hosted by a web server and are accessed using the stateless HTTP protocol. As such, if an application uses stateful interaction, it has to implement  state management on its own. ASP.NET provides various functions for state management. Conceptually, Microsoft treats "state" as GUI state. Problems may arise if an application needs to keep track of "data state"; for example, a finite state machine which may be in a transient state between requests (Lazy evolution) or which takes a long time to initialize.
Application state
Application state is held by a collection of shared user-defined variables. These are set and initialized when the Application_OnStart event fires on the loading of the first instance of the application and are available until the last instance exits. Application state variables are accessed using the Applications collection, which provides a wrapper for the application state variables. Application state variables are identified by name.
Session state
Server-side session state is held by a collection of user-defined session variables that are persisted during a user session. These variables, accessed using the Session collection, are unique to each session instance. The variables can be set to be automatically destroyed after a defined time of inactivity even if the session does not end. Client-side user session is maintained by either a cookie or by encoding the session ID in the URL itself.
ASP.NET supports three modes of persistence for server-side session variables:
In-Process Mode
The session variables are maintained within the ASP.NET process. This is the fastest way; however, in this mode the variables are destroyed when the ASP.NET process is recycled or shut down.
ASPState Mode
ASP.NET runs a separate Windows service that maintains the state variables. Because state management happens outside the ASP.NET process, and because the ASP.NET engine accesses data using .NET Remoting, ASPState is slower than In-Process. This mode allows an ASP.NET application to be load-balanced and scaled across multiple servers. Because the state management service runs independently of ASP.NET, the session variables can persist across ASP.NET process shutdowns. However, since session state server runs as a single instance, it is still a single point of failure for session state. The session-state service cannot be load-balanced, and there are restrictions on types that can be stored in a session variable.
SqlServer Mode
State variables are stored in a database , allowing session variables to be persisted across ASP.NET process shutdowns. The main advantage of this mode is that it allows the application to balance load on a server cluster, sharing sessions between servers. This is the slowest method of session state management in ASP.NET.
View state
View state refers to the page-level state management mechanism, utilized by the HTML pages emitted by ASP.NET applications to maintain the state of the web form controls and widgets. The state of the controls is encoded and sent to the server at every form submission in a hidden field known as __VIEWSTATE. The server sends back the variable so that when the page is re-rendered, the controls render at their last state. At the server side, the application may change the viewstate, if the processing requires a change of state of any control. The states of individual controls are decoded at the server, and are available for use in ASP.NET pages using the ViewState collection.
The main use for this is to preserve form information across postbacks. View state is turned on by default and normally serializes the data in every control on the page regardless of whether it is actually used during a postback. This behavior can (and should) be modified, however, as View state can be disabled on a per-control, per-page, or server-wide basis.
Developers need to be wary of storing sensitive or private information in the View state of a page or control, as the base64 string containing the view state data can easily be de-serialized. By default, View state does not encrypt the __VIEWSTATE value. Encryption can be enabled on a server-wide (and server-specific) basis, allowing for a certain level of security to be maintained.
Server-side caching
ASP.NET offers a "Cache" object that is shared across the application and can also be used to store various objects. The "Cache" object holds the data only for a specified amount of time and is automatically cleaned after the session time-limit elapses.
 Other
Other means of state management that are supported by ASP.NET are  cookies caching,  and using the query string.

Extension

Microsoft has released some extension frameworks that plug into ASP.NET and extend its functionality. Some of them are:
ASP.NET AJAX
An extension with both client-side as well as server-side components for writing ASP.NET pages that incorporate AJAX functionality.
ASP.NET MVC Framework
An extension to author ASP.NET pages using the  MVC architecture.

No comments:

Post a Comment